AGRICULTURAL AND FOOD CHEMISTRY

Synthesis and Antiviral Activities of Antofine Analogues with Different C-6 Substituent Groups

Meng Wu, Guifang Han, Ziwen Wang, Yuxiu Liu, and Qingmin Wang*

State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China

Supporting Information

ABSTRACT: On the basis of previous structure–activity relationship (SAR) and antiviral mechanism studies, antofine analogues with different substituent groups at the C-6 position targeting tobacco mosaic virus (TMV) RNA were synthesized for the first time. The antofine analogues 1a–8a and 1b–9b were evaluated for their antiviral activity against TMV. The SAR study of antofine analogues is discussed. Most of the compounds were found to exhibit higher antiviral activity than commercial Ningnanmycin in vitro and in vivo. The groups with hydrogen donor or electron-withdrawing groups at the C-6 position were found to be favorable for antiviral activity.

KEYWORDS: antofine analogues, antiviral activity, TMV, SAR

INTRODUCTION

The plant disease caused by tobacco mosaic virus (TMV) is found worldwide. TMV is known to infect members of 9 plant families and at least 125 individual species, including tobacco, tomato, pepper, cucumbers, and a number of ornamental flowers. Therefore, this plant virus has the name "plant cancer" and is difficult to control. Every year, the loss caused by TMV is up to U.S. \$100 million worldwide.¹ Ningnanmycin, a commercial antiviral agent, is more effective in the treatment of plants against TMV than other existing commercial agents. However, the use of this agent for field trial is largely limited by its photosensitivity and water stickiness.² In fact, there are no chemical treatments that can absolutely inhibit TMV once it does infect plants. Therefore, the development of a highly efficient, novel, environmentally benign antiviral agent is needed.

Phenanthroindolizidine alkaloids are a small group of alkaloids isolated mainly from Cynanchum, Pergularia, Tylophora, and some other genera of the Asclepiadaceae family. Biological activities of these compounds include antiarthritis,⁴ antilupus,⁵ antiamoebic,⁶ and anti-inflammatory effects,⁷ as well as a most notable antitumor activity.⁸⁻¹⁵ (R)-6-O-Desmethylantofine (2a, Figure 1) was found to exhibit excellent antitumor activity, which was higher than that of (R)-antofine (1a, Figure 1) due to the hydroxyl group at the C-6 position.¹⁵⁻¹⁷ However, unlike the well-studied antitumor activity, the antiviral activity study of phenanthroindolizidine alkaloids is very limited. In our previous work, (R)-antofine and (R)-6-O-desmethylantofine were isolated from Cynanchum *komarovii*, and both were found to possess excellent antiviral activity against TMV.^{18,19} The antiviral mechanism study revealed that antofine could interact selectively and tightly with target sites by embedding in the pockets created by different structures of TMV RNA. The study also indicated that antofine has a favorable interaction with the origin of TMV RNA (oriRNA), exerting its virus inhibition by binding to oriRNA and interfering with virus assembly initiation.²⁰ Further

study confirmed that antofine analogues bound selectively with TMV RNA bulged structures and disrupted in vitro virus assembly through small molecule–RNA interactions and therefore disrupted interaction between TMV RNA and TMV coat protein (CP).²¹

In a previous work, the modification of antofine was focused on the position and number of methoxy groups on the phenanthrene ring. However, there is no study about the C-6 substituted antofine derivatives. To study the influence of the substituent group at the C-6 position on antiviral activity and optimize phenanthroindolizidine alkaloids as antiviral agents, the C-6-substituted antofine analogues **1a–8a** and **1b–9b** targeting TMV RNA were designed, synthesized, and evaluated for their antiviral activity against TMV. The structure–activity relationship study of the antofine analogues against TMV is discussed.

EXPERIMENTAL PROCEDURES

Instruments. ¹H NMR spectra were obtained at 400 MHz using a Bruker AC-P 400. Chemical shift values (δ) were given in parts per million and were downfield from internal tetramethylsilane. High-resolution mass spectra (HRMS) were recorded on FT-ICR MS (Ionspec, 7.0 T). Melting points were determined on an X-4 binocular microscope melting point apparatus (Beijing Tech Instruments Co., Beijing, China) and were uncorrected. Reagents were purchased from commercial sources and were used as received. All anhydrous solvents were dried and purified according to standard techniques just before use.

The phenanthroindolizidine alkaloids 1a, 1b, 2a, and 2b (Figure 1) were prepared as described previously.^{22,23} The synthetic route of derivatives 3a-8a and 3b-9b is shown in Scheme 1.

General Procedure for the Synthesis of 3a-7a and 3b-7b. To a solution of (*R*)- or (*S*)-6-*O*-desmethylantofine (2a or 2b, 0.81 g,

Received:	November 21, 2012
Revised:	January 15, 2013
Accepted:	January 15, 2013
Published:	January 15, 2013

Figure 1. Chemical structures of phenanthroindolizidine alkaloids 1a, 1b, 2a, and 2b.

Scheme 1. Synthesis of Antofine Analogues 3a-8a and 3b-9b

2.33 mmol) in N,N-dimethylformamide (15 mL) was added Cs_2CO_3 (0.91 g, 2.79 mmol). The mixture was stirred at room temperature for 0.5 h and then brought to 0 °C; then a solution of α -bromo compounds (bromoacetonitrile, 3-bromopropyne, 2-bromoacetamide, ethyl bromoacetate, or bromoethane) (2.79 mmol) in N,Ndimethylformamide (10 mL) was added slowly. The mixture was warmed to room temperature and stirred until TLC showing the reaction was finished. EtOAc (30 mL) and water (30 mL) were added, and the organic layer was separated; then the water phase was extracted with EtOAc. The organic phases were combined and dried over sodium sulfate and filtered. Solvent was then evaporated and the crude product purified by column chromatography (EtOAc as eluent) to give the products 3a-7a and 3b-7b.

Data for (*R*)-6-ethoxy-2,3-dimethoxyphenanthro[9,10-b]indolizidine (**3a**): white solid, yield 88%; mp 211–213 °C;¹H NMR (400 MHz, CDCl₃) δ 7.86 (s, 2H), 7.76 (d, ³J_{HH} = 8.8 Hz, 1H), 7.25 (s, 1H), 7.16 (d, ³J_{HH} = 9.2 Hz, 1H), 4.64 (d, ²J_{HH} = 15.2 Hz, 1H), 4.21 (q, ³J_{HH} = 6.8 Hz, 2H), 4.07 (s, 3H), 4.03 (s, 3H), 3.62 (d, ²J_{HH} = 15.2 Hz, 1H), 3.43 (t, ³J_{HH} = 8.4 Hz, 1H), 3.66 (d, ²J_{HH} = 15.6 Hz, 1H), 2.80–2.87 (m, 1H), 2.36–2.43 (m, 2H), 2.15–2.25 (m, 1H), 1.98–2.03 (m, 1H), 1.83–1.90 (m, 1H), 1.67–1.75 (m, 1H), 1.51 (t, ³J_{HH} = 6.8 Hz, 1H).; ¹³C NMR (100 MHz, CDCl₃) δ 155.7, 148.2, 147.2, 129.1, 126.8, 126.0, 125.6, 124.8, 124.4, 123.1, 123.0, 122.4, 114.0, 104.5, 102.8, 102.7, 62.6, 59.1, 54.9, 54.8, 54.0, 52.8, 32.6, 30.2, 20.5, 14.0. HRMS (ESI) calcd for C₂₄H₂₈NO₃ [M + H]⁺, 378.2064; found, 378.2069.

Data for (S)-6-ethoxy-2,3-dimethoxyphenanthro[9,10-b]indolizidine (**3b**): white solid, yield 89%; mp 212–214 °C. ¹H NMR, ¹³C NMR, and HRMS (ESI) are the same as for compound **3a**.

Data for (R)-6-propargyloxy-2,3-dimethoxyphenanthro[9,10-b]indolizidine (**4a**): white solid, yield, 85%; mp 197–199 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.04 (br, 1 H), 7.91 (s, 1 H), 7.83 (d, ³J_{HH} = 9.2 Hz,1 H), 7.31 (s, 1 H), 7.24–7.26 (m, 1 H), 4.90 (s, 2 H), 4.69 (d, ²J_{HH} = 14.8 Hz, 1 H), 4.10 (s, 3 H), 4.06 (s, 3 H), 3.69 (d, ²J_{HH} = 14.4 Hz, 1 H), 3.47 (t, ${}^{3}J_{HH}$ = 8.0 Hz, 1 H), 3.35 (d, ${}^{2}J_{HH}$ = 15.6, 1 H), 2.87–2.93 (m, 1 H), 2.59 (s, 1 H), 2.44–2.52 (m, 2 H), 2.20–2.29 (m, 1 H), 2.00–2.06 (m, 1 H), 1.90–1.97 (m, 1 H), 1.74–1.82 (m, 1 H); 13 C NMR (100 MHz, CDCl₃) δ 155.4, 149.5, 148.4, 130.1, 127.1, 126.6, 126.1, 124.7, 124.3, 123.5, 115.1, 106.6, 104.0, 103.8, 78.7, 75.8, 60.2, 56.3, 56.0, 55.9, 55.1, 53.9, 33.8, 31.3, 21.6. HRMS (ESI) calcd for C₂₅H₂₆NO₃ [M + H]⁺, 388.1907; found, 388.1909.

Data for (5)-6-propargyloxy-2,3-dimethoxyphenanthro[9,10-b]indolizidine (**4b**): white solid, yield, 85%; mp 195–197 °C;. ¹H NMR, 13 C NMR, and HRMS (ESI) are the same as for compound **4a**.

Data for (R)-6-cyanomethyloxy-2,3-dimethoxyphenanthro[9,10-b]indolizidine (**5a**): yellow solid, yield, 93%; mp 228–230 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 8.03 (d, ⁴J_{HH} = 2.0 Hz, 1H), 7.88 (s, 1H), 7.87 (d, ³J_{HH} = 7.6 Hz, 1H), 7.32 (s, 1H), 7.23–7.26 (m, 1H), 4.96 (s, 2H), 4.69 (d, ²J_{HH} = 14.8 Hz, 1H), 4.12 (s, 3H), 4.07 (s, 3H), 3.70 (d, ²J_{HH} = 14.8 Hz, 1H), 3.47 (t, ³J_{HH} = 8.0 Hz, 1H), 3.34–3.38 (m, 1H), 2.88–2.96 (m, 2H), 2.42–2.51 (m, 1H), 2.21–2.29 (m, 1H), 2.01–2.07 (m, 1H), 1.91–1.97 (m, 1H), 1.75–1.82 (m, 1H); ¹³C NMR (100 MHz, DMSO- d_6) δ 154.6, 149.8, 148.7, 130.2, 127.3, 127.1, 126.7, 125.7, 124.9, 123.5, 115.5, 114.9, 107.3, 104.1, 103.8, 60.3, 56.1, 56.0, 55.2, 54.5, 53.9, 33.9, 31.4, 21.7. HRMS (ESI) calcd for C₂₄H₂₅N₂O₃ [M + H]⁺, 389.1860; found, 389.1858.

Data for (S)-6-cyanomethyloxy-2,3-dimethoxyphenanthro[9,10b]indolizidin (**5b**): yellow solid, yield, 92%; mp 227–229 °C. ¹H NMR, ¹³C NMR, and HRMS (ESI) are the same as for compound **5a**.

Data for (*R*)-6-carbamoylmethyloxy-2,3-dimethoxyphenanthro-[9,10-b]indolizidin (**6**a): light yellow solid, yield, 92%; mp 232–234 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 8.13 (d, ⁴ $J_{\rm HH}$ = 2.4 Hz, 1H), 8.06 (s, 1H), 7.84 (d, ³ $J_{\rm HH}$ = 9.2 Hz, 1H), 7.66 (s, 1H), 7.50 (s, 1H), 7.34 (s, 1H), 7.21 (dd, ³ $J_{\rm HH}$ = 9.2 Hz, ⁴ $J_{\rm HH}$ = 2.4 Hz, 1H), 4.69 (s, 2H), 4.60 (d, ² $J_{\rm HH}$ = 15.2 Hz, 1H), 4.02 (s, 3H), 3.95 (s, 3H), 3.60 (d, ² $J_{\rm HH}$ = 15.2 Hz, 1H), 3.34–3.37 (m, 2H), 2.75–2.82 (m, 1H), 2.38–2.47 (m, 2H), 2.14–2.18 (m, 1H), 1.82–1.88 (m, 2H), 1.63–1.68 (m, 1H); ¹³C NMR (100 MHz, DMSO- d_6) δ 170.2, 155.8, 149.3, 148.4,

Table 1. In Vitro and in Vivo Antiviral Activities of Antofine Analogues 1a-8a and 1b-9b against TMV^a

Compd		C 12a	Cone	Inhibition rate (%) ^a				
	Compd	R	(<i>R/S</i>)	(μg/mL)	In Vitro effect	Protection effect	Inactivatio n effect	Curative effect
	1.	CH	D	500	65.8	55.7	58	62.5
14	СП3	A	100	30.4	32.3	29.4	33.4	
1b	CH ₃	ç	500	60.2	51.1	55.5	56.4	
		5	100	30.5	37.2	26.7	28.4	
2a	29	н	R	500	70.5	60.4	65.3	72.4
	11	A	100	40	35.4	33.5	42	
2b	2b	н	S	500	52.2	43.2	46.2	49.6
		5	100	21.3	19.5	17.8	23.2	
3a	3a	CH_3CH_2	R	500	50	40.2	43.7	49.7
				100	32.5	10.4	28.5	27.2
3b	3b	CH ₃ CH ₂	S	500	56.2	48	53.2	51.1
				100	25.6	28.5	23	24.3
4 a	HC=-CH ₂	R	500	61.2	58.6	52.8	59.3	
				100	43.7	39.7	38.9	36.1
	4b HC≡−0	HC≡−CH ₂	S	500	75	71.6	70	74.9
		2	-	100	48.6	40.9	42.4	45.5
	5a	$\begin{array}{c} \mathbf{5a} & \text{CNCH}_2 \\ \mathbf{5b} & \text{CNCH}_2 \\ \mathbf{6a} & \begin{array}{c} H_2N \\ O \end{array} \\ \mathbf{7cH}_2 \\ 7c$	R	500	79.3	74.5	72.3	75.1
				100	40	42.3	38.7	44.1
5 6	5b		S	500	60	54.3	58.2	57.8
				100	31.5	26.3	27.9	30.4
	6a		R	500	78.5	72.7	71.2	77.1
				100	49.2	40	44.6	46.8
6b 7a	6b	H_2N CH_2 O C_2H_5O CH_2	S	500	52.3	48.4	46.1	45.2
				100	20.9	21.2	14.3	17
	7a		R	500	74.6	66.1	67.6	70
	Ö		100	42.5	34.5	35.1	38.9	
7Ь	C ₂ H ₅ O CH ₂ O	S	500	50.4	49.8	45.2	40.6	
			100	24.3	22.4	18.1	17.5	
8a 8b 9b	OHCH ₂ CH ₂	R	500	78.2	71.6	70.4	74.2	
			100	47.5	39.5	40.9	42.8	
	8b	OHCH ₂ CH ₂	S	500	43.9	42.3	40.5	44
				100	10	10.5	12	18.6
	CH ₃ CO	S	500	68.7	54.2	58.5	59.4	
	Ningnan			100	30.6	16.2	19.3	22.4
1			_	500	69.3	57.9	54.2	58.7
myem			100	26.8	38.4	25	23.1	

^{*a*}The deviation of values was $\pm 5\%$.

129.7, 126.3, 125.7, 124.3, 123.6, 123.0, 116.0, 105.9, 104.5, 104.2, 67.2, 59.9, 55.8, 55.4, 54.4, 53.1, 32.8, 30.8, 21.2. HRMS (ESI) calcd for $\rm C_{24}H_{27}N_2O_4~[M+H]^+,$ 407.1965; found, 407.1959.

Data for (S)-6-carbamoylmethyloxy-2,3-dimethoxyphenanthro-[9,10-b]indolizidin (**6b**): light yellow solid, yield, 92%; mp 230–232 °C. ¹H NMR, ¹³C NMR, and HRMS (ESI) are the same as for compound **6a**.

Data for (R)-6-carbethoxymethyloxy-2,3-dimethoxyphenanthro-[9,10-b]indolizidin (**7a**): white solid, yield, 96%; mp 174–176 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.98 (s, 1H), 7.89 (s, 1H), 7.83 (d, ³J_{HH} = 8.8 Hz, 1H), 7.32 (s, 1H), 7.21 (dd, ⁴J_{HH} = 1.6 Hz, ³J_{HH} = 8.8 Hz, 1H), 4.82 (s, 2H), 4.67 (d, ²J_{HH} = 15.2 Hz, 1H), 4.32 (q, ³J_{HH} = 7.2 Hz, 2H), 4.11 (s, 3H), 4.07 (s, 3H), 3.69 (d, ²J_{HH} = 15.2 Hz, 1H), 3.46 (t, ${}^{3}J_{\text{HH}} = 8.0 \text{ Hz}, 1\text{H}$), 3.33–3.38 (m, 1H), 2.86–2.93 (m, 1H), 2.42– 2.50 (m, 2H), 2.21–2.29 (m, 1H), 1.99–2.06 (m, 1H), 1.87–1.95 (m, 1H), 1.74–1.82 (m, 1H), 1.32 (t, ${}^{3}J_{\text{HH}} = 7.2 \text{ Hz}, 3\text{H}$); ${}^{13}\text{C}$ NMR (100 MHz, CDCl₃) δ 169.2, 155.8, 149.7, 148.6, 130.3, 127.3, 126.8, 126.3, 125.0, 124.6, 123.6, 114.8, 106.7, 104.2, 104.0, 66.1, 61.6, 60.4, 56.2, 56.1, 55.2, 54.0, 34.0, 31.5, 21.8, 14.4. HRMS (ESI) calcd for C₂₆H₃₀NO₅ [M + H]⁺, 436.2118; found, 436.2124.

Data for (S)-6-carbethoxymethyloxy-2,3-dimethoxyphenanthro-[9,10-b]indolizidin (**7b**): white solid, yield, 95%; mp 173–175 °C. ¹H NMR, ¹³C NMR, and HRMS (ESI) are the same as for compound 7a.

General Procedure for the Synthesis of 8a and 8b. To a solution of 7a or 7b (0.42 g, 0.97 mmol) in THF (15 mL) at 0 °C was added lithium aluminum hydride (0.11 g, 2.90 mmol). The mixture

was stirred at room temperature for 1 h and then was brought back to 0 °C; water was added dropwise. The mixture was extracted with dichloromethane, and then the combined organic phase was dried over sodium sulfate and filtered. The solvent was removed by evaporation to give **8a** or **8b** as a white solid.

Data for (*R*)-6-(2-hydroxyethyloxy)-2,3-dimethoxyphenanthro-[9,10-b]indolizidin (**8***a*): yield, 97%; mp 214–216 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, ⁴*J*_{HH} = 1.6 Hz, 1H), 8.07 (s, 1H), 7.81 (d, ³*J*_{HH} = 8.8 Hz, 1H), 7.32 (s, 1H), 7.23 (dd, ⁴*J*_{HH} = 1.6, ³*J*_{HH} = 8.8 Hz, 1H), 4.55 (d, ²*J*_{HH} = 15.2 Hz, 1H), 4.24 (t, ³*J*_{HH} = 4.8 Hz, 2H), 4.02 (s, 3H), 3.94 (s, 3H), 3.82 (q, ³*J*_{HH} = 4.8 Hz, 1H), 3.52 (d, ²*J*_{HH} = 14.8 Hz, 1H), 3.27–3.33 (m, 2H), 2.72–2.78 (m, 1H), 2.28–2.39 (m, 2H), 2.11–2.19 (m, 1H), 1.79–1.90 (m, 2H), 1.61–1.68 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 156.7, 149.3, 148.3, 129.8, 126.4, 126.4, 125.5, 124.2, 123.3, 123.0, 115.7, 105.6, 104.5, 104.1, 69.8, 59.9, 59.8, 55.8, 55.4, 54.5, 53.3, 33.1, 30.9, 21.2. HRMS (ESI) calcd for C₂₄H₂₈NO₄ [M + H]⁺, 394.2013; found, 394.2010.

Data for (S)-6-(2-hydroxyethyloxy)-2,3-dimethoxyphenanthro-[9,10-b]indolizidin (**8b**): yield, 97%; mp 216–218 °C. ¹H NMR, ¹³C NMR, and HRMS (ESI) are the same as for compound **8a**.

Procedure for the Synthesis of (S)-6-Acetoxy-2,3dimethoxyphenanthro[9,10-b]indolizidin (9b). A mixture of (S)-6-O-desmethylantofine (0.32 g, 0.92 mmol), pyridine (15 mL), and acetic anhydride (12 mL) was stirred at room temperature for 3 h. The solvent was removed by rotary evaporation, and the crude product was washed with ether to give 9b (0.35 g, 97%) as a white solid: mp 232–234 °C;¹H NMR (400 MHz, CDCl₃) δ 8.19 (d, ⁴J_{HH} = 2.0 Hz, 1H), 7.89 (d, ${}^{3}J_{HH}$ = 9.2 Hz, 1H), 7.87 (s, 1H), 7.32 (s, 1H), 7.30 (dd, ${}^{3}J_{HH} = 9.2$ Hz, ${}^{4}J_{HH} = 2.0$ Hz, 1H), 4.70 (d, ${}^{2}J_{HH} = 15.2$ Hz, 1H), 4.11 (s, 3H), 4.07 (s, 3H), 3.71 (d, ${}^{2}J_{HH} = 15.2$ Hz, 1H), 3.45– 3.49 (m, 1H), 3.36 (dd, ${}^{2}J_{HH} = 15.6$ Hz, ${}^{4}J_{HH} = 2.4$ Hz, 1H), 2.88–2.95 (m, 1H), 2.44–2.50 (m, 2H), 2.21–2.29 (m, 1H), 2.01–2.07 (m, 1H), 1.90-1.97 (m, 1H), 1.74-1.82 (m, 1H); ¹³C NMR (100 MHz, $CDCl_3$) δ 170.0, 149.7, 148.7, 148.5, 129.9, 128.0, 127.5, 127.0, 126.7, 124.3, 123.8, 120.1, 114.5, 104.0, 103.9, 60.2, 56.1, 56.0, 55.2, 54.0, 34.0, 31.4, 21.7, 21.4. HRMS (ESI) calcd for C₂₄H₂₆NO₄ [M + H]⁺, 392.1856; found, 392.1858.

Antiviral Biological Assay. The procedure of purifying TMV, the method to test the antiviral activity of compounds against TMV in vitro, and the method to test the protective effect, the inactivation effect, and the curative effect of compounds against TMV in vivo were described in the literature.²⁴

Antiviral Activity of Compounds against TMV in Vitro. A fresh leaf of the 5–6 growth stage of tobacco (*Nicotiana tabacum* var. Xanthi nc) inoculated by the juice-leaf rubbing method (concentration of TMV is $5.88 \times 10^{-2} \,\mu\text{g/mL}$) was cut in half along the main vein. The halves were immersed into the solution of 500 $\mu\text{g/mL}$ (or 100 $\mu\text{g/mL}$) of the compounds and double-distilled water for 20 min and then cultured at 25 °C for 72 h. Each compound was replicated at least three times.

Protective Effect of Compounds against TMV in Vivo. The compound solution was smeared on the left side, and the solvent served as a control on the right side for growing *N. tabacum* var. Xanthi nc leaves of the same ages. The leaves were then inoculated with the virus after 12 h. A brush was dipped in TMV of 6×10^{-3} mg/mL to inoculate the leaves, which were previously scattered with silicon carbide. The leaves were then washed with water and rubbed softly along the nervature once or twice. The local lesion numbers appearing 3–4 days after inoculation were counted. There were three replicates for each compound.

Inactivation Effect of Compounds against TMV in Vivo. The virus was inhibited by mixing with the compound solution at the same volume for 30 min. The mixture was then inoculated on the left sides of the leaves of *N. tabacum* var. Xanthi nc, whereas the right sides of the leaves were inoculated with the mixture of solvent and the virus for control. The local lesion numbers were recorded 3–4 days after inoculation. There were three replicates for each compound.

Curative Effect of Compounds against TMV in Vivo. Growing leaves of N. tabacum var. Xanthi nc of the same ages were selected. TMV (concentration of 6.0×10^{-3} mg/mL) was dipped and inoculated on the whole leaves. Then, the leaves were washed with

water and dried. The compound solution was smeared on the left side, and the solvent was smeared on the right side for control. The local lesion numbers were then counted and recorded 3-4 days after inoculation. There were three replicates for each compound.

The in vitro and in vivo inhibition rates of the compound were then calculated according to the following formula ("av" means average, "no." means number, and controls were not treated with compound):

inhibition rate % = [(av local lesion no. of control)]

av local lesion no. of drug treated)

/av local lesion no. of control] \times 100%

RESULTS AND DISCUSSION

Antiviral Activity of Antofine Analogues. The in vitro (half-leaf method using picked leaves) and in vivo (protection, inactivation, and curative effect assays using whole plants) antiviral results against TMV of antofine analogues 1a-8a and 1b-9b are listed in Table 1. The antiviral activity of compounds (*R*)-antofine (1a) and (*S*)-antofine (1b) against TMV has been reported in our previous work.²⁵ Compounds (*R*)- and (*S*)-desmethoxyantofine 2a and 2b and Ningnanmy-cin were used as the controls. The compounds were tested at both 500 and 100 μ g/mL.

Generally, all of the antofine analogues exhibited good antiviral activity against TMV both in vitro and in vivo, and some of them showed even higher antiviral activity than Ningnanmycin. Our results indicated that compounds 4b, 5a, 6a, 7a, and 8a exhibited higher in vitro activity than Ningnanmycin at two concentrations, and more compounds, 1a, 1b, 2a, 3a, 4a, and 5b, exhibited higher in vitro activity than Ningnanmycin at the lower concentration (100 μ g/mL). Ningnanmycin showed excellent protection activity, and only compounds 4b, 5a, and 6a exhibited higher protection activity than Ningnanmycin at two concentrations, whereas compounds 2a, 7a, and 8a exhibited higher protection activity than Ningnanmycin at the higher concentration (500 μ g/mL). For the inactivation effect and curative effect, more antofine analogues exhibited higher activity than Ningnanmycin. Compounds 1a, 2a, 3a, 4b, 5a, 5b, 6a, 7a, 8a, and 9b showed higher inactivation activity than Ningnanmycin at two concentrations. Compounds 1a, 2a, 4b, 5a, 6a, 7a, and 8a showed higher curative activity than Ningnanmycin at two concentrations, and compounds 1b, 3a, 4a, and 5b showed higher curative activity than Ningnanmycin at 100 μ g/mL.

The structure-activity relationships showed the same tendency in the four test modes. In other words, compounds that exhibited higher in vitro activity (such as 4b, 5a, 6a, 7a, and 8a) also exhibited higher protection, inactivation, and curative activities. However, the active tendency was different for R-configuration compounds 1a-8a and S-configuration compounds 1b-9b. In other words, the influence of the C-6 substituent on the antiviral activity was also affected by the stereochemistry of C-13a. For the compounds with Rconfiguration, the antiviral activity reduced obviously when the hydroxyl group at the C-6 position was changed to methoxyl (1a) or ethoxyl (3a) (inhibition rate: 3a < 1a < 2a). This indicated that a hydrogen donor at the C-6 position was important for antiviral activity and that a linear alkyl at the C-6 position was unfavorable for antiviral activity. When another hydrogen donor group (amide or alcoholic hydroxyl) or electron-withdrawing group (cyano group or ethoxycarbonylmethoxyl) was introduced at the C-6 position, the antiviral activity distinctly increased (5a, 6a, 7a, 8a > 2a) in all four test modes. For the compounds with S-configuration, when the hydroxy group at the C-6 position was changed to methoxyl, ethoxyl, propargyloxy, or cyanomethyloxy, the antiviral activity increased (1b, 3b, 4b, 5b > 2b). When amide or ethoxycarbonylmethoxy was introduced at the C-6 position, 6b and 7b showed the same activity level as 2b. When the hydroxyl group at the C-6 position was changed to 2hydroxyethoxyl, the antiviral activity reduced obviously (8b < 2b). Acetylation of the hydroxyl group at the C-6 position led to increased activity (9b > 2b).

In summary, antofine analogues with different C-6 substituent groups were prepared in excellent yield and evaluated for their antiviral activities against TMV. Although the mechanism study indicated that the substituent groups on the phenanthrene ring had little effect on drug-RNA interaction,²¹ this work suggested that both the stereochemistry of C-13a and the substituent at the C-6 position affected the antiviral activity. In general, (R)-antofine analogues have better antiviral activity than (S)-antofine analogues, and the groups with hydrogen donor or electron-withdrawing groups at the C-6 position are favorable for antiviral activity. Among these compounds, (R)-6-O-desmethylantofine (2a), (S)-6-O-propargyl derivative 4b, (R)-6-O-cyanomethyl derivative 5a, (R)-6-O-carbamoylmethyl derivative 6a, (R)-6-O-carbethoxymethyl derivative 7a, and (R)-6-O-(2-hydroxyethyl) derivative 8a exhibited excellent antiviral activity, which were better than that of Ningnanmycin both in vitro and in vivo. Thus, antofine analogues with different C-6 substituent groups could be considered as a new class of antiviral agents.

ASSOCIATED CONTENT

Supporting Information

¹H and ¹³C NMR and HRMS spectra of compounds **3a**, **4b**, **5a**, **6a**, **7a**, **8a**, and **9b**.This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*Phone: +86-022-23503952. Fax: +86-022-23503952. E-mail: wang98h@263.net or wangqm@nankai.edu.cn.

Funding

We gratefully acknowledge assistance from the National Key Project for Basic Research (2010CB126106), the National Natural Science Foundation of China (21132003, 21121002), the Tianjin Natural Science Foundation (11JCZDJC20500), the National Key Technology Research and Development Program (2011BAE06B05, 2012BAK25B03-3), and the China Postdoctoral Science Foundation (2011M500519, 2012T50207).

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank China Agricultural University for supplying some chemical reagents.

REFERENCES

(1) Bos, L. 100 years of virology: from vitalism via molecular biology to genetic engineering. *Trends Microbiol.* **2000**, *8* (2), 82–87.

(2) Chen, M. H.; Chen, Z.; Song, B. A.; Bhadury, P. S.; Yang, S.; Cai, X. J.; Hu, D. Y.; Xue, W.; Zeng, S. Synthesis and antiviral activities of

chiral thiourea derivatives containing an α -aminophosphonate moiety. *J. Agric. Food Chem.* **2009**, *57*, 1383–1388.

(3) Gellert, E. The indolizidine alkaloids. *J. Nat. Prod.* **1982**, 45, 50–73.

(4) You, X.; Pan, M.; Gao, W.; Shiah, H. S.; Tao, J.; Zhang, D.; Koumpouras, F.; Wang, S.; Zhao, H.; Madri, J. A.; Baker, D.; Cheng, Y. C.; Yin, Z. Effects of a novel tylophorine analog on collagen-induced arthritis through inhibition of the innate immune response. *Arthritis Rheum.* **2006**, *54*, 877–886.

(5) Choi, J. Y.; Gao, W.; Odegard, J.; Shiah, H. S.; Kashgarian, M.; McNiff, J. M.; Baker, D. C.; Cheng, Y. C.; Craft, J. Abrogation of skin disease in LUPUS-prone MRL/FASIpr mice by means of a novel tylophorine analog. *Arthritis Rheum.* **2006**, *54*, 3277–3283.

(6) Baumgartner, B.; Erdelmeier, C. A. J.; Wright, A. D.; Rali, T.; Sticher, O. An antimicrobial alkaloid from *Ficus septica*. *Phytochemistry* **1990**, *29*, 3327–3330.

(7) Yang, C. W.; Chen, W. L.; Wu, P. L.; Tseng, H. Y.; Lee, S. J. Antiinflammatory mechanisms of phenanthroindolizidine alkaloids. *Mol. Pharmacol.* **2006**, *69*, 749–758.

(8) Gellert, E.; Rudzats, R. The antileukemia activity of tylocrebrine. *J. Med. Chem.* **1964**, *7*, 361–362.

(9) Gupta, R. S.; Siminovitch, L. Mutants of CHO cells resistant to the protein synthesis inhibitors, cryptopleurine and tylocrebrine: genetic and biochemical evidence for common site of action of emetine, cryptopleurine, tylocrebrine, and tubulosine. *Biochemistry* **1977**, *16*, 3209–3214.

(10) Damu, A. G.; Kuo, P. C.; Shi, L. S.; Li, C. Y.; Kuoh, C. S.; Wu, P. L.; Wu, T. S. Phenanthroindolizidine alkaloids from the stems of *Ficus septica*. *J. Nat. Prod.* **2005**, *68*, 1071–1075.

(11) Fu, Y.; Lee, S. K.; Min, H. Y.; Lee, T.; Lee, J.; Cheng, M.; Kim, S. Synthesis and structure-activity studies of antofine analogues as potential anticancer agents. *Bioorg. Med. Chem. Lett.* **2007**, *17*, 97–100. (12) Yang, X. M.; Shi, Q.; Yang, S. C.; Chen, C. Y.; Yu, S. L.; Bastow, K. F.; Morris-Natschke, S. L.; Wu, P. C.; Lai, C. Y.; Wu, T. S.; Pan, S. L.; Teng, C. M.; Lin, J. C.; Yang, P. C.; Lee, K. H. Antitumor agents 288: design, synthesis, SAR, and biological studies of novel heteroatom-incorporated antofine and cryptopleurine analogues as potent and selective antitumor agents. *J. Med. Chem.* **2011**, *54*, 5097–5107.

(13) Gao, W. L.; Busson, S.; Grill, S. P.; Gullen, E. A.; Hu, Y. C.; Huang, X.; Zhong, S.; Kaczmarek, C.; Gutierrez, J.; Francis, S.; Baker, D. C.; Yu, S.; Cheng, Y. C. Structure-activity studies of phenanthroindolizidine alkaloids as potential antitumor agents. *Bioorg. Med. Chem. Lett.* **2007**, *17*, 4338–4342.

(14) Gao, W. L.; Chen, A. P. C.; Leung, C. H.; Gullen, E. A.; Furstner, A.; Shi, Q.; Wei, L. Y.; Lee, K. H.; Cheng, Y. C. Structural analogs of tylophora alkaloids may not be functional analogs. *Bioorg. Med. Chem. Lett.* **2008**, *18*, 704–709.

(15) Wang, Z. W.; Wu, M.; Wang, Y.; Li, Z.; Wang, L.; Han, G. F.; Chen, F. Z.; Liu, Y. X.; Wang, K. L.; Zhang, A.; Meng, L. H.; Wang, Q. M. Synthesis and SAR studies of phenanthroindolizidine and phenanthroquinolizidine alkaloids as potent anti-tumor agents. *Eur. J. Med. Chem.* **2012**, *51*, 250–258.

(16) Stærk, D.; Lykkeberg, A. K.; Christensen, J.; Budnik, B. A.; Abe, F.; Jaroszewski, J. W. *In vitro* cytotoxic activity of phenanthroindolizidine alkaloids from *Cynanchum vincetoxicum* and *Tylophora tanakae* against drug-sensitive and multidrug-resistant cancer cells. *J. Nat. Prod.* **2002**, *65*, 1299–1302.

(17) Toribio, A.; Bonfils, A.; Delannay, E.; Prost, E.; Harakat, D.; Henon, E.; Richard, B.; Litaudon, M.; Nuzillard, J. M.; Renault, J. H. Novel seco-dibenzopyrrocoline alkaloid from *Cryptocarya oubatchensis*. *Org. Lett.* **2006**, *8*, 3825–3828.

(18) An, T. Y.; Huang, R. Q.; Yang, Z.; Zhang, D. K.; Li, G. R.; Yao, Y. C.; Gao, J. Alkaloids from *Cyanachum komarovii* with inhibitory activity against the tobacco mosaic virus. *Phytochemistry* **2001**, *58*, 1267–1269.

(19) Huang, Z. Q.; Liu, Y. X.; Fan, Z. J.; Wang, Q. M.; Li, G. R.; Yao, Y. C.; Yu, X. S.; Huang, R. Q. Antiviral activity of alkaloids from

Cynanchum komarovi. Fine Chemical Intermediates (Ch.) 2007, 37, 20–24.

(20) Xi, Z.; Zhang, R. Y.; Yu, Z. H.; Ouyang, D. The interaction between tylophorine B and TMV RNA. *Bioorg. Med. Chem. Lett.* **2006**, *16*, 4300–4304.

(21) Gao, S.; Zhang, R. Y.; Yu, Z. H.; Xi, Z. Antofine analogues can inhibit tobacco mosaic virus assembly through small-molecule–RNA Interactions. *ChemBioChem* **2012**, *13*, 1622–1627.

(22) Wu, M.; Li, L.; Su, B.; Liu, Z. H.; Wang, Q. M. First total synthesis of (-)-and (+)-6-O-desmethylantofine. Org. Biomol. Chem. 2011, 9, 141–145.

(23) Wang, Z. W.; Li, Z.; Wang, K. L.; Wang, Q. M. Efficient and chirally specific synthesis of phenanthro-indolizidine alkaloids by parham-type cycloacylation. *Eur. J. Org. Chem.* **2010**, *2*, 292–299.

(24) Wang, K. L.; Su, B.; Wang, Z. W.; Wu, M.; Li, Z.; Hu, Y. N.; Fan, Z. J.; Mi, N.; Wang, Q. M. Synthesis and antiviral activities of phenanthroindolizidine alkaloids and their derivatives. *J. Agric. Food Chem.* **2010**, *58*, 2703–2709.

(25) Wang, Z. W.; Wei, P.; Wang, L. Z.; Wang, Q. M. Design, synthesis, and anti-tobacco mosaic virus (TMV) activity of phenanthroindolizidines and their analogues. *J. Agric. Food Chem.* **2012**, *60*, 10212–10219.